

imagine

Introduction and Experiment Design

- AIPCs (Activated Islet Progenitor Cells) are a novel cell population derived from islets and pancreatic tissue using a simple culture protocol that can generate billions of insulin-producing islet cells (Figure 1).
- AIPCs are over 65% insulin-, glucagon-, and CD133-triple-positive, can be propagated for over 200 days in culture, secrete both insulin and glucagon in response to secretagogues, and form cell clusters that represent de novo-islet like structures (Figure 1).
- AIPCs represent not only a novel cell population and a tool to foster studies of islet cell biology, but a realistic cellular approach for the treatment of insulin insufficiency in diseases such as diabetes and pancreatitis.
- To further characterize AIPCs RNA sequencing of pancreatic tissue, AIPCs and de novo-islets from the same deceased donor was performed using the Illumina® NovaSeq[™] platform.

Activated Islet Progenitor Cells (AIPCs)

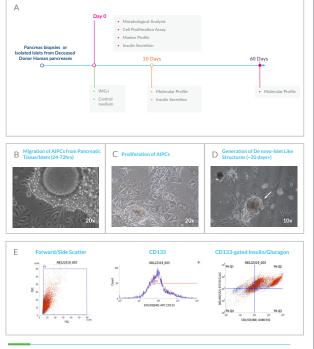
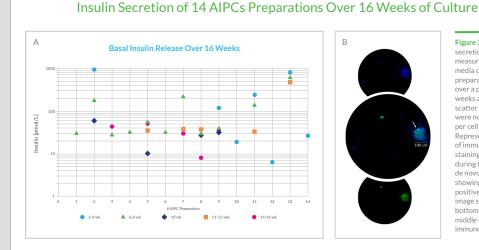



Figure 1. A schematic for the generation of AIPCs (A). IMG-1 activates and mobilizes islet progenitor cells (B). Within 7 days' colonies of AIPCs become established and monolayer of AIPCs form around day 10 (C). After approximately 7 population doublings and several passages AIPCs begin to spontaneously form de novo-islet like structures, white arrow (D). AIPCs are triple positive for CD133/Insulin and Glucagon (E).

Figure 2. Basal insulin secretion levels were measured in the media of 14 AIPCs preparations randomly over a period of 16 weeks and shown on a scatter plot, (the values were not normalized per cell numbers (A)). Representative images of immunofluorescence staining of AIPCs during the process of de novo-islet formation showing Insulin positive cells. (B). Top image shows DAPI, bottom insulin and middle shows merged immuno-florescence.

Comparative Gene Expression of Islet Cell Maturation, Cell Cycle and Exocrine Markers

PRSS1

PRSS2

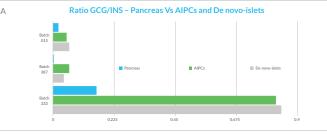
CTRC

LPL

AMY2A

CELA2A

AMY1A


let Cell Maturation	Pancreas	AIPCs			Families of G
Cell Cycle				Islet Cell Maturation	Cell Cycle
Exocrine Markers				INSR	E2F1
	25	50 75		INS	BARD1
	25	50 /5	100	SST	CHAF1A
				GCG	CHAF1B
	AIPCs	De novo-islet		ISL1	CCNE2
	AIPCS	De novo-isie	5	PDX1	CCNE1
t Cell Maturation				NKX2-2	PCNA
Cell Cycle				NKX6-1	CCND1
Exocrine Markers				MAFA	
		1 1		MAFB	
	25	50 75	100	PAX6	
				PROM1	
	Pancreas	De novo-islet		DCLK1	
et Cell Maturation	. ancreas	- Senovo-Islea		NEUROD1	
t Cell Maturation				IGFBP1	
Cell Cycle				IAPP	
Exocrine Markers				PPY	
EAUCTINE Markers	25	50 75		PAX4	

А

C

Figure 3. Comparative
gene analysis betwee
AIPCs and Pancreatic
Tissue (A), AIPCs and
de novo-Islets (B)
and de novo-Islets
and Pancreatic tissue
(C) looking at genes
involved in Islet Cell
Maturation (top), Cell
Cycle (middle) and
Exocrine Markers
(bottom). To determin
differences in gene
expression across
samples Transcripts
per million (TPM) wer
used. Number of gene
are expressed as %.

Ratios of Glucagon/Insulin and MafB/MafA

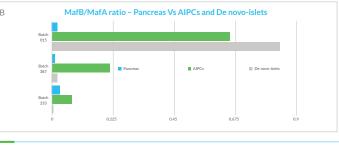


Figure 4. Maturation state of AIPCs and de novo-Islets based on the ratio of glucagon/insulin (A) and MafB/ MafA (B) gene expression in three preparations. Expression of MafB precedes MafA during

pancreatic development (Dev Biol, 2006 May 15: 293(2): 526-539.) and adult alpha (glucagon producing) cells can be converted to beta (insulin producing) cells (Cell Metab. 2017 Mar 7; 25(3): 622-634.).

Summary

- AIPCs are an endocrine progenitor cell population that can spontaneously evolve and mature into de novo-islets.
- AIPCs secrete insulin in vitro for over 16 weeks during culture.
- When generating de novo-islets the majority of insulin producing cells migrate to form the cell clusters.
- Microarray analysis demonstrates that AIPCs have more genes expressed related to cell cycle, while de novo-islets express higher levels of genes associated with islet cell maturation, and pancreatic tissue exhibits the highest levels of exocrine marker proteins.
- Ratios of glucagon/insulin and MafB/MafA indicate that AIPCs are very immature pancreatic cells, and AIPCs-derived de novo-islets represent the next stage of development, having a gene profile that is more akin to that of a premature islet.
- AIPCs represent not only a novel cell population suitable to investigate the pathophysiology of diabetes but can function as an islet substitute to treat hyperglycemia.

Acknowledgments

We are grateful to the Organ Donor Families for their generous donation and to CORE (Center for Organ Procurement and Education) Pittsburgh, Pennsylvania, USA.